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Abstract

The experience in virtual reality (VR) is unique, in that observers are in a real-world location

while browsing through a virtual scene. Previous studies have investigated the effect of the

virtual environment on distance estimation. However, it is unclear how the real-world envi-

ronment influences distance estimation in VR. Here, we measured the distance estimation

using a bisection (Experiment 1) and a blind-walking (Experiments 2 and 3) method.

Participants performed distance judgments in VR, which rendered either virtual indoor or

outdoor scenes. Experiments were also carried out in either real-world indoor or outdoor

locations. In the bisection experiment, judged distance in virtual outdoor was greater than that

in virtual indoor. However, the real-world environment had no impact on distance judgment

estimated by bisection. In the blind-walking experiment, judged distance in real-world outdoor

was greater than that in real-world indoor. On the other hand, the virtual environment had no

impact on distance judgment estimated by blind-walking. Generally, our results suggest that

both the virtual and real-world environments have an impact on distance judgment in VR.

Especially, the real-world environment where a person is physically located during a VR expe-

rience influences the person’s distance estimation in VR.
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One important goal of virtual reality (VR) technology is to make the experience in the virtual
environment mimic that of the real environment. Egocentric distance perception is one of the
fundamental measurements of the visual space (Loomis & Knapp, 2003; Renner et al., 2013).
Veridical distance perception in VR is important to applications (Renner et al., 2013) such as
military training. Thus, distance perception in the VR environment has been studied exten-
sively (Bruder et al., 2015; Creem-Regehr et al., 2015; Kelly et al., 2017; Kunz et al., 2015; for
a review, see Renner et al., 2013).

One factor that has been found to have an impact on distance perception is the environ-
mental context. The effect of environmental context has been observed in studies performed in
real-world (Bodenheimer et al., 2007; Iosa et al., 2012; Lappin et al., 2006; Philbeck et al., 2018;
Witt et al., 2007), in augmented reality (Livingston et al., 2009), and in VR environment (Kelly
et al., 2017, 2018). The previous studies have demonstrated that the perceived distance is
influenced not only by the physical dimensions of the environmental layout (Lappin et al.,
2006; Witt et al., 2007) but also by observers’ knowledge of the layout, which can be acquired
through previews (Kelly et al., 2018) and interactions (Kelly et al., 2018; Philbeck et al., 2018).
In VR, the observer is located in a real world that is usually different from the virtual scene,
resulting in a perceptual dissociation between the real-world and the virtual environment.
Under such circumstances, observers may have a completely immersed experience in the VR
environment or may still feel somewhat in the real-world environment. Presumably, distance
perception can be influenced by both the real-world and the VR environment. The more
immersive experience the observer has in VR, the more likely it is that the perceived distance
will be affected by the VR environment. On the other hand, if the observer is aware of the real
world, the real-world environment may also have an impact on the perceived distance.

The current study aimed to investigate how environmental context influences distance
perception, using a VR head-mounted display (HMD). We proposed that environmental
context has two components: the real-world and the virtual environment. Specifically, we
tested the influence of the real-world environment, when observers were aware of their real-
world surroundings during the VR experience. Previous studies have compared the distance
estimation in different VR environments (Creem-Regehr et al., 2015) when observers were
located in only one real environment. However, no one has tested whether, and to what
extent, would two different real-world environments have an impact on the VR experience.
In the present study, observers were asked to perform an identical VR distance judgment
task, when they were in two different real environments. This differed from the previous
studies, where observers were blindfolded before entering either the experimental environ-
ment (Creem-Regehr et al., 2015; Geuss et al., 2012) or the real-world environment kept
constant through the experiment (Interrante et al., 2006; Kelly et al., 2018). In the present
study, subjects were always aware of the different real-world environments used during the
experiment. This is important because, in some of the VR applications, users are aware of
their surroundings. Therefore, if such awareness might affect the distance estimation in VR,
such a distortion needs to be acknowledged.

There are different methods to measure distance perception (Loomis & Philbeck, 2008),
including the categorization of verbal estimates, perceptual matching, and visual directed
actions (Renner et al., 2013). Usually, the distance range was within action space (Cutting
& Vishton, 1995), from around 2 m to 25 m from the observers. One of the most commonly
used methods is blind-walking, whereby participants view a target and are then
blindfolded and asked to walk toward the estimated location of the target. Studies have
shown that in real-world environments, under full-cue viewing conditions, there is no
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systematic error when performing a blind-walk from around 1–2 m to 20–25 m on the ground
(Loomis & Knapp, 2003; Sinai et al., 1998; Wu et al., 2004), while other studies have observed
a small yet consistent underestimation of the egocentric distance perception (Bian & Andersen,
2013; Gajewski et al., 2010, 2014; Z. Li et al., 2011). On the other hand, in VR environments,
the distance was underestimated in blind-walking tasks (Loomis & Knapp, 2003; Messing &
Durgin, 2005), at a mean rate of 74% of the veridical distance (Renner et al., 2013), especially
with HMD systems (Plumert et al., 2005). However, more recent studies have shown that the
perceived egocentric distance, using advanced HMD systems, is more accurate and closer to
that in real world (Buck et al., 2018; Kelly et al., 2017; B. Li et al., 2016).

Another method that is often used to measure distance perception is perceptual matching,
which, unlike blind-walking, does not involve motor responses (Philbeck & Loomis, 1997).
Bisection is one of the methods of perceptual matching. Bisection requires a participant to
determine the midpoint of a distance interval between themselves and a target. In a real-world
environment, bisection is as accurate as blind-walking (Rieser et al., 1990). A study by
Bodenheimer et al. (2007), using the bisection method, found that accurately estimated distance
in the real world was nonlinearly compressed in VR. That is, the estimated midpoint distance
increased at a rate lower than the actual midpoint distance did. Note that the distance estima-
tion may vary according to the measurement method. While absolute distance is estimated in
blind-walking, in the bisection method, the estimation depends on the relative distance as well.
Thus, perhaps it is not appropriate to compare the measured distance directly between these
two methods under the same environmental context. However, it is still possible to investigate
the influence of environmental context separately, for blind-walking and bisection.

In the present study, we used these two measurement methods of distance perception—
bisection and blind-walking. We hypothesized that environmental context would have a
differential effect on the two methods. Because bisection is a closed-loop method where
visual feedback in the virtual scene is given when the judgment is made, the virtual environ-
ment would affect distance estimation. On the other hand, with blind-walking, observers are
required to walk in the real world with no visual feedback from the virtual scene, and in this
case, the real-world environment would affect distance estimation. We used constant error
(CE, aka systematic error) to measure the accuracy of the judged distance and variable error
(VE, aka random error) to measure the precision. Specifically, CE measured the systematic
bias of the judged distance, that is, whether the distance was underestimated, overestimated,
or correctly estimated. On the other hand, VEs measured the consistency of the judgments,
that is, the variations across trials.

To test the previous hypotheses, we performed three experiments: In Experiment 1, we
used the bisection method, while we used the blind-walk method in Experiments 2 and 3. All
the experiments were carried out in two locations on our campus—one was an indoor hall-
way and the other was an outdoor pathway. Replicas of the two locations were installed in
VR. Moreover, distance estimation was evaluated for the following four combined condi-
tions: the real hallway location with the virtual hallway scene, the real hallway location with
the virtual pathway scene, the real pathway location with the virtual hallway scene, and the
real pathway location with the virtual pathway scene.

Experiment 1

Methods and Materials

Apparatus. Different virtual environments were displayed using an HTC VIVE headset, and
headset displays were generated using Unity3D with NVidia GeForce GTX 1070 graphics
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card. The headset displays had a resolution of 1,080� 1,200, a field of view (FOV) of 110�

diagonally per eye, and a refresh rate of 60 Hz. The position and orientation were tracked in

three dimensions using the Lighthouse tracking system.

Stimuli. Two real-world environments on our campus—an indoor hallway and an outdoor

pathway—were selected as the experiment locations. The replicas of these two environments

were modeled into VR, where the experiment was performed (Figure 1A). The distance from

the simulated starting position of the participants, to the far end of the terrain, was 14.5 m

and 90 m in the virtual indoor and outdoor environments, respectively. The width of the

indoor hallway and the outdoor pathway was 2.64 m and 4.67 m, respectively. Note that the

targets only appeared in virtual environments. More importantly, the participants were

aware of where they really were during the experiment. In VR, the simulated eye-heights

for participants were auto-adjusted by the HTC VIVE system according to their real-world

eye-heights. Participants wore a pair of earbuds during the whole experiment to prevent

ambient noise from the real world.

Figure 1. (A) The photos of the two real-world locations where the experiments were taken place and the
models of the two locations in the virtual scenes. The replicas in the VR simulated the metric information of
the real world (such as the extensions of the scenes and the locations of the trees and doors) but did not
simulate all its details. (B) The bisection method in Experiment 1. Observers were asked to adjust the
position of the nearest target in depth to match the midpoint of the farthest target. (C) The blind-walking
method in Experiment 2. Observers were asked to view the target first and then walk to the estimated
distance blindfolded. Notice that the size of the targets in the figures is for the purpose of demonstration and
was not identical in the experiments.
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Participants. Twenty-eight college students (age 21–26 years, 10 females) who were naive to
this study participated in the experiment. All participants had normal or corrected-to-normal
vision and were right-handed. This research complied with the tenets of the Declaration
of Helsinki and was conducted in accordance with the recommendations of “the
Guideline for Human Behavior Studies, the Institutional Review Board of UESTC MRI
Research Center for Brain Research.” Written informed consent was obtained from each
participant before enrollment. Finally, the protocol of the present study was approved by the
Institutional Review Board of UESTC MRI Research Center for Brain Research.

Design. Bisection was used in the current experiment. In each trial, two black disks were
presented on the floor right in front of the participant (Figure 1B). The disks were positioned
0.001 m above the ground to generate a perception of cardboard lying on the ground. The
position of the farther disk was fixed while the initial position of the nearer disk was placed
randomly in depth between the participants and the farthest disk. The participants were
asked to move a mouse (Logitech G100s) back and forth to adjust the position of the nearer
disk until they felt it was at the midpoint between the participant and the farther disk and
then click the left mouse button to confirm the estimation. Note that the adjustment of the
position was only along the direction in depth. After distance estimation, both the disks
disappeared for 2 seconds before the initiation of the proceeding trial. The radius of the disk
was 0.025 m, at a distance of 4 m, corresponding to approximately 0.67 degrees in horizontal
angular size. The size of the disk varied according to its distance to the observer, to keep the
horizontal angular size constant so that the angular size would not become a cue for the
distance judgment.

The distance of the farther disk to the participant was varied across trials, from 4 m to 7.8
m, with an interval of 0.2 m. Thus, there were 20 different distances in total. Within a block,
each distance was tested once, and there were 20 trials in each block. Table 1 displays the
design of the experiment. Participants were divided into two groups and performed the
experiment on 2 days separated by a 7-day interval. Participants in Group 1 performed
the first session (Day 1) in the real-world indoor hallway and the second session (Day 2)
on the real-world outdoor pathway. Each session consisted of four blocks, and the order of
the blocks was counterbalanced with an ABBA design. Within each block, only one virtual
environment (indoor hallway or outdoor pathway) was tested. For instance, a participant
from Group 1 would be asked to come to the real-world indoor hallway on the first

Table 1. The Averaged Estimated Midpoint, CE, and VE for Each Condition in Experiment 1.

Day 1: Real-world indoor Day 2: Real-world outdoor

Virtual indoor Virtual outdoor Virtual indoor Virtual outdoor

Group 1

(n¼ 14)

Estimated midpoint 2.69 m 2.45 m 2.70 m 2.54 m

Constant error –8.3% –16.1% –7.8% –12.9%

Variable error 6.2% 8.2% 6.4% 7.6%

Day 1: Real-world outdoor Day 2: Real-world indoor

Virtual indoor Virtual outdoor Virtual indoor Virtual outdoor

Group 2

(n¼ 14)

Estimated midpoint 2.80 m 2.68 m 2.76 m 2.62 m

Constant error –4.7% –8.2% –5.6% –10.3%

Variable error 7.0% 8.0% 7.8% 7.4%
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day and to perform four blocks of the bisection method in a virtual “indoor-outdoor-

outdoor-indoor” order. After 7 days, the participant would come to the real-world

outdoor pathway and then perform four blocks of the bisection method with a virtual

“outdoor-indoor-indoor-outdoor” order. Participants in Group 2 performed the same

experiment as participants in Group 1, except that they arrived at the real-world outdoor

pathway on the first day and at the real-world indoor hallway on the second session

(Day 2, 7 days later). Hence, the order of both the real-world and the virtual environments

was counterbalanced.

Results

We evaluated and compared three independent variables: (a) virtual environment (virtual

indoor and outdoor), (b) real-world environment (real-world indoor and outdoor), and (c)

practicing effect (Day 1 and Day 2). The dependent variable was the mean estimation of the

midpoints. The mean estimated midpoints of each condition are presented in Table 1 and

Figure 2A. Moreover, we analyzed the CEs and VEs for each condition. For each observer,

CE was calculated as the average of the ratio of (judged—veridical midpoint distances) to the

veridical midpoint distances, and VE was calculated as the standard deviation of the same

ratio. Then, a three-way (virtual environment, real-world environment, and practicing effect)

repeated analysis of variance (ANOVA) was applied to compare CEs and VEs. For CEs, the

results showed a significant main effect of the virtual environment, F(1, 13)¼ 19.508, p< .01,

g2p¼0.600. Particularly, CE in the virtual outdoor environment (–11.9%) was more negative

than that in the virtual indoor environment (–6.6%). For VEs, results showed a significant

main effect of the virtual environment, F(1, 13)¼ 9.553, p< .01, g2p¼0.424. VE in the virtual

outdoor (7.8%) was higher than that in the virtual indoor (6.8%). No other main effects or

interactions were found to be significant for either CEs or VEs. CEs and VEs for each

condition are displayed in Table 1.
Figure 2B illustrates the estimated midpoints across all the distances in different virtual

environments, showing that the estimated midpoint was farther in virtual indoor than virtual

outdoor across distances. We further performed a linear regression for both the virtual

indoor (Y¼ 0.7572�Xþ 0.5020, R2¼ .9975) and the virtual outdoor (Y¼ 0.6412�
Xþ 0.6805, R2¼ .9968). A binomial test was performed to test the difference between the

judged and veridical midpoint distances. Results showed that the judged midpoint distances

were significantly underestimated in both the virtual outdoor environment (p< .001) and the

virtual indoor environment (p< .05).
To summarize the results of Experiment 1, we found that midpoint distance judgments in

VR showed larger underestimations in the virtual outdoor environment, compared with

those in the virtual indoor environment. The consistency of the judgments was better in

the virtual indoor compared with virtual outdoor. In contrast, the real-world environment

did not affect the distance judgments in this experiment.

Experiment 2

In Experiment 1, we demonstrated that the virtual environment, not the real-world environ-

ment, affects distance judgment in VR. The task in Experiment 1 was bisection. In

Experiment 2, we tested the distance estimation using blind-walking, which requires walking

in the real world.

6 i-Perception 12(3)



Methods and Materials

Participants. Forty college students (age 20–25 years, 15 females) who were naive to this study

participated in the experiment. All participants had normal or corrected-to-normal vision

and were right-handed. None of them had participated in Experiment 1.

Design. Blind-walking was used in the current experiment. The apparatus and the stimuli

were the same as those in Experiment 1. In each trial, a target was placed on the ground in

front of the participant. The distance from the center of the target to the participant varied

from 3 m to 5.5 m, with a 0.5 m interval. The target appeared as a black rectangle, which

subtended a visual angle of approximately 0.8 degrees (vertically) by 5.0 degrees (horizon-

tally) across different distances. Thus, the size did not provide a cue for the distance. In each

trial, participants were asked to wear the HMD and viewed a scene that included the target.

Figure 2. (A) The ratio of the estimated midpoint to the target in Experiment 1. Error bars denote standard
error. The ideal performance is 100%. (B) Averaged midpoint estimates across distances in virtual indoor and
outdoor environments. The light color band denotes the range of the standard errors.
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After about 5 seconds, participants were asked to close their eyes, remove the HMD, and

were blindfolded by eye patches. They were then asked to walk at their normal pace, to the

location where the target was presented. While participants were walking, one experimenter

walked with the participants to ensure that they walked in the correct direction. Participants

were told to stop when they thought they reached the target location. The walked distance

was measured using a digital laser rangefinder, and participants were asked to turn around

and were led by the experimenter to the original location before continuing with the next

trial. Participants opened their eyes only with the HMD on during the experiment.
Participants were divided into four groups, and each of them was asked to come to the

experiment twice, with a 7-day interval between the two sessions. Each group consisted of 10

participants. The design of the experiment is shown in Table 2. Groups 1 and 2 viewed the

indoor hallway as the virtual environment throughout the experimental sessions. The other

participants only viewed the virtual outdoor pathway throughout the experimental sessions.

On Day 1 (first session), participants in Group 1 and Group 3 performed the experiment in

the real-world indoor hallway, and after 7 days (second session), they performed the exper-

iment in the real-world outdoor pathway. The order of the real-world environments for

Group 2 and Group 4 was swapped. In each session, each participant performed the

blind-walking method for 15 trials, with 3 repetitions across 5 different distances.

The order of the trials was randomized with the constraint that no adjacent trials were of

the same distance. Before the experiment, participants were asked to close their eyes and

blindly walked back and forth a few times to familiarize themselves with blind-walking.

Results

We evaluated and compared three independent variables: (a) virtual environment (virtual

indoor and outdoor), (b) real-world environment (real-world indoor and outdoor), and (c)

practicing effect (Day 1 and Day 2). The dependent variable was the mean walked distance.

The mean walked distances in each condition are illustrated in Table 2 and Figure 3A.

We compared the CEs and VEs using a three-way mixed ANOVA. For the CEs, we

found significant main effect of the real-world environment, F(1, 36)¼ 10.569, p< .01,

Table 2. The Averaged Estimated Midpoint, CE, and VE for Each Condition in Experiment 2.

Group 1 (n¼ 10) Group 2 (n¼ 10)

Day 1:

Real-world

indoor

Day 2:

Real-world

outdoor

Day 1:

Real-world

outdoor

Day 2:

Real-world

indoor

Virtual

indoor

Walked distance 3.68 m 4.61 m 3.99 m 4.21 m

Constant error –14.0% 7.5% –7.0% –1.6%

Variable error 5.9% 9.2% 8.1% 7.4%

Group 3 (n¼ 10) Group 4 (n¼ 10)

Day 1:

Real-world

indoor

Day 2:

Real-world

outdoor

Day 1:

Real-world

outdoor

Day 2:

Real-world

indoor

Virtual

outdoor

Walked distance 4.15 m 4.69 m 4.40 m 4.25 m

Constant error –2.8% 9.4% 2.6% –1.2%

Variable error 7.1% 8.9% 9.7% 8.9%
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g2p ¼ 0.227, and of the practicing effect, F(1, 36)¼ 12.678, p< .01, g2p ¼ 0.260. CE in the real-

world outdoor environment (3.1%) was greater than that in the real-world indoor environ-

ment (–4.9%). CEs on the second day (3.5%) were greater compared to that of the first day

(–5.3%). For the VEs, we observed a significant main effect of the real-world environment, F

(1, 36)¼ 8.239, p< .01, g2p ¼ 0.186. VE in the real-world outdoor (9.0%) was greater com-

pared to the real-world indoor (7.3%) environment. No other significant main effects or

interactions were found for either CEs or VEs. An illustration of CEs and VEs for each

condition is in Table 2.
Figure 3B illustrates the walked distance across all distances, showing that the walked

distance was longer in real-world outdoor than in real-world indoor across distances.

In addition, we performed a linear regression for both real-world outdoor (Y¼ 1.266�X

– 0.9555, R2¼ .9922) and real-world indoor (Y¼ 1.122�X – 0.6977, R2¼ .9968). A binomial

test was applied to investigate the differences between the walked and the veridical distances.

However, no significant differences were found for either the real-world indoor or outdoor

environment.
To summarize the results of Experiment 2, the walked distances in the real-world outdoor

environment were greater than the walked distances in the real-world indoor environment.

The consistency of the judgments was better in real-world indoor compared with real-world

Figure 3. (A) The ratios of the walked distances to the target distances in Experiment 2. Error bars denote
standard error. (B) Averaged walked distances at all the distances in real-world indoor and outdoor envi-
ronments. The light color band denotes the range of the standard errors.
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outdoor Nevertheless, there were no significant differences between the walked and veridical
distances. Overall, the virtual environment did not affect the distance judgments in this
experiment.

Experiment 3

In Experiment 2, the virtual environment did not have an impact on the walked distance,
possibly because each observer only viewed one virtual scene. Thus, the between-subject
comparison may have failed to detect the virtual environmental effect. In this experiment,
we analyzed the effect of the virtual environment using the within-subject design that was
used in Experiment 1.

Methods and Materials

Participants. Fourteen college students (age 21–23 years, 6 females) who were naive to this study
participated in the experiment. All participants had normal or corrected-to-normal vision and
were right-handed. None of them had participated in Experiment 1 or Experiment 2.

Design. The blind-walking method was the same as in Experiment 2, using the same appa-
ratus and stimuli. The experiment was performed in a real-world hallway. The experiment
consisted of four blocks, and the order of the blocks was counterbalanced with an ABBA
design. Within each block, only one virtual environment (indoor hallway or outdoor path-
way) was tested. In each block, the participants performed the blind-walking method for five
trials, across five different distances (3 to 5.5 m with a 0.5 m interval). The order of the
virtual scenes was counterbalanced.

Bayesian Analysis. It is likely that even with a within-subject design, there is still no significant
virtual environment effect on the walked distance, which favors the null hypothesis.
However, it is impossible to assess if the data favor the null hypothesis in the classical
null hypothesis significance testing framework. Nevertheless, the Bayesian framework can
provide evidence for the null hypothesis, by measuring how much more likely the data are
under the null hypothesis compared to the alternative hypothesis (Quintana & Williams,
2018). Thus, we also performed a Bayesian paired t test with JASP version 0.14.1 (JASP
Team, 2020) to test whether the virtual environment has an impact on walked distance. The
prior is defined by a zero-centered Cauchy distribution with a scale of 0.707.

Results

The effect of the virtual environment (indoor vs. outdoor) was evaluated using CEs and VEs.
The CEs for virtual indoor and outdoor were –6.1% and –8.1%, respectively. A paired t test
showed a nonsignificant difference for CE, t(13)¼ 0.711, p¼ .490. The VEs for virtual indoor
and outdoor were 4.0% and 3.9%, respectively. A paired t test showed a nonsignificant
difference for VEs, t(13)¼ 1.438, p¼ .174. Further, a Bayesian paired sample t test was
performed to compare CEs indoor and outdoor. The result showed BF10¼ 0.336, which
provides moderate evidence that CEs are more likely to be the same indoor/outdoor than
they are different.

Figure 4 illustrates the walked distance in virtual indoor and outdoor environments.
A binomial test was applied to investigate the differences between the walked and veridical
distances. Our analyses showed a tendency for the walked distances to be underestimated in
both the virtual indoor (p¼ .057) and the virtual outdoor (p¼ .057) environments.
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Discussion

In this study, we examined distance estimations within the action space using an HMD.
Previous studies have investigated the effect of virtual environmental context on distance
estimation in VR (Bodenheimer et al., 2007; Kelly et al., 2017, 2018). However, no evidence
has shown that the real-world environment, where you actually are during a VR experience,
has an impact on distance judgment in VR. Our study, for the first time, has demonstrated
that both the real-world and the virtual environment can influence distance judgment in VR.
Specifically, with the method of bisection (Experiment 1), judged midpoint distance was
closer in the virtual indoor environment than in the virtual outdoor environment. With
the method of blind-walking (Experiments 2 and 3), walked distance was farther in the
real outdoor environment than that in the real indoor environment.

The main finding of interest in Experiment 1 was that the judged midpoint distance in
virtual outdoor was shorter than that in virtual indoor. We propose that these differences
may be related to the linear perspective and the terrestrial horizon, which is defined as the
visible far end of the terrain (Sedgwick, 1986). First, the indoor consisted of a narrower
hallway, compared with the outdoor pathway. Besides, in the indoor environment, there
were doors and other objects on the sidewall, compared with only a few trees within the
action space in the outdoor. Thus, the indoor environment provided a better linear perspec-
tive, which may have facilitated the midpoint estimations. Second, the heights of the terres-
trial horizons in the two environments were different. The distance from the observer to the
front wall indoor was 14.5 m, while the distance from the observer to the front building
outdoor was 90 m. Previous studies have found that when linear perspective is fixed, raising
the terrestrial horizon, results in an underestimation of the distance perception in VR
(Messing & Durgin, 2005), as well as in the real world when the vision is degraded (Rand
et al., 2011). Therefore, because the outdoor environment consisted of fewer linear perspec-
tive cues and higher heights of the terrestrial horizon in the current study, the estimated
midpoints were more underestimated.

Previous studies have investigated the influence of environmental factors on distance
estimation in the real world (Lappin et al., 2006; Philbeck et al., 2018; Witt et al., 2007)
and VR (Bodenheimer et al., 2007). One study in particular (Lappin et al., 2006) found
greater overestimations of the midpoints in real-world indoor (lobby and hall) compared

Figure 4. Averaged walked distances at all the distances in real-world indoor and outdoor environments in
Experiment 3. The light color band denotes the range of the standard errors.
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with a real-world outdoor (lawn). In addition, some studies have shown that in long hall-
ways, midpoint estimations are closer than those in shorter hallways (Witt et al., 2007), while
others did not find a significant environmental effect on VR (Bodenheimer et al., 2007).
Interestingly, our findings suggest a general underestimation of the midpoints in contrast to
Lappin et al. (2006). Moreover, unlike Bodenheimer et al. (2007), we observed an effect of
environmental context in VR. Perhaps factors such as the variable distance range of the
midpoints and the sizes of targets may have contributed to these inconsistencies in the results
across the studies. Therefore, further studies are required to investigate how these factors
influence distance estimation.

In Experiment 2, the main finding of interest was that the mean walked distance in real-
world outdoor was greater than that in real-world indoor, while the response consistency in
real-world indoor was better than that in real-world outdoor. This may be influenced by two
cognitive factors. The first factor is the top-down knowledge about the environmental con-
text (Philbeck et al., 2018). When observers are outdoor, they know that there is an extended
area, in which they can walk farther and are unlikely to bump into the walls or other
obstacles. On the other hand, when the observers are indoors, the less extended area
would limit the walking range, and they are more afraid to hit the sidewalls. Thus, observers
tend to walk shorter indoors than outdoors. This is consistent with the restricted FOV
condition in a previous blind-walking study (Philbeck et al., 2018). These findings are also
in line with those in Iosa et al. (2012), which suggest that observers have more daily expe-
rience in walking in small indoor environments without vision. Thus, blind indoor walking is
closer (suggested by the CEs) but more consistent (suggested by the VEs), because, in the
dark, undershooting is safer than overshooting (Iosa et al., 2012). The second factor is the
expectation of the distance range of the targets (Pagano & Isenhower, 2008). Even though in
Experiment 2, the indoor distance range of the targets is identical to the outdoor distance
range, it is still possible that observers have such an expectation that, due to the larger
outdoor layout, the targets outdoor are expected to be further away than those in the
indoor environment. Pagano and Isenhower (2008) have shown that the expectation of the
distance range of the targets affects verbal distance estimates but not the rapid blind reach-
ing. According to Goodale and Milner (1992), there are two separated neural pathways, a
cognitive stream for conscious perception and a motor stream for action. It has been pro-
posed that expectation only affects tasks that are processed through the cognitive stream but
not those that are processed through the motor stream (Pagano & Isenhower, 2008).
However, Experiment 2 showed that blind-walking was mediated by the expectation.
There may be two explanations for this. First, there is also evidence suggesting that the
two streams are responding to the unitary perceived distance (Philbeck & Loomis, 1997).
Thus, if expectation meditates perceived distance, such a bias would potentially be observed
in the outcomes from the motor stream as well. Second, unlike rapid blind reaching, blind-
walking takes much more time and demands memory representation and updating during
the walking (Loomis et al., 2002). This kind of procedure may require interaction with the
cognitive stream, and thus, it is likely to be influenced by the expectation.

Notably, previous studies have already investigated the impact of the real-world environ-
ment on VR distance estimations (Interrante et al., 2006; Kelly et al., 2018). However, in
these studies, only one real-world environment was used in the experiment, and the virtual
environment was the replica of the real world. The current study, for the first time, demon-
strated that a different real-world environment makes a difference to the distance estimated
by blind-walking, but not to that estimated by bisection. Moreover, Experiments 2 and 3
showed that the virtual environment had no impact on the distance estimated by blind-
walking. These findings are supported by an earlier study (Kelly et al., 2017), which
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showed a null effect of the virtual environment when blind-walking was compared across
different virtual environments (virtual classroom and grass) with the same HMD as we used
in the present study. It is also consistent with Kunz et al. (2009), which showed that the
quality of graphics influences only for verbal reports, but not for blind-walking. Thus, it is
possible that during blind-walking, unlike the bisection method, observers did not have any
visual feedback from the virtual scene; hence, the representation of the virtual environment
in the mind was weakened. As a result, the VR environmental context did not affect the
walked distance.

In Experiment 2, we did not observe a general underestimation of distance perception as
measured by blind-walking, possibly due to a practicing effect. However, in line with previ-
ous studies, the performance on Day 1 in Experiment 2 (a mean rate of 94.7% of the veridical
distance), as well as the performance in Experiment 3 (a mean rate of 92.9% of the veridical
distance), demonstrated a slight underestimation. The amount of underestimation in the
current study was smaller than most of the previous studies, with a mean rate of 74% of
the veridical distance (Renner et al., 2013). However, recent studies have demonstrated that
with advanced HMDs, a distance estimated by blind-walking is more accurate and closer to
that in the real world (Buck et al., 2018; Kelly et al., 2017; B. Li et al., 2016).

It should, however, be noted that the two measurement methods we used—bisection and
blind-walking—are different in multiple ways. For instance, the shape and the distance of the
targets differ between the two methods. Nevertheless, it is not within the scope of the present
study to determine the exact factors that cause the differential effects of the environmental
context. As a starting point, the current study intended to show that distance judgment in
VR experience can be affected by not only the virtual environment but also by the real world.
For now, we propose that one factor, that is, whether feedback was given when judgments
were being made, may play an important role in distance judgment. When observers were
adjusting the positions of the midpoints by bisection method, visual feedback from the
virtual scene was given. On the contrary, during blind-walking, no feedback was available
from the virtual scene, and perhaps the real-world surroundings may have restricted the
walking action. Thus, the differential effect of environmental context was observed.

It should be noted that perceptual-motor calibration may play an important role in
reducing the bias of distance perception in VR. Even in the real-world environment, it is
common and necessary for us to coordinate actions with the feedback of our perception, to
keep perceptual-motor systems accurate (e.g., Mon-Williams & Bingham, 2007). In the vir-
tual environment, although the egocentric distance was generally underestimated, such dis-
tortion can also be calibrated through feedback and practice (Renner et al., 2013). For
instance, it has been found that feedback with the estimated distance and actual distance
(Richardson &Waller, 2005) improves the accuracy of distance estimates in VR. Other forms
of feedback, such as auditory stop signal (Mohler et al., 2006) and free walking in the VR
environment (Kelly et al., 2018), can also improve the distance estimates obtained by blind-
walking. Thus, in Experiment 2 of the current study, it is possible that the effect of a real-
world environment on blind-walking can also be eliminated by proper feedback. But we
doubt that the feedback in Experiment 1 could calibrate the midpoint estimation because
midpoint estimation depends only on visual perception and does not require motor responses
(Bodenheimer et al., 2007), while blind-walking requires motor responses. As discussed ear-
lier, conscious perception and vision-guided action may be processed through different path-
ways. Previous studies have only shown the effect of calibration in action but not perception.
For instance, Altenhoff et al. (2012) have demonstrated that feedback improves blind reach-
ing but not verbal estimates in VR. With a preview of the VR environment, blind-walking
judgment was improved but size judgment was not (Kelly et al., 2018). Thus, although the
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role of the calibration was not tested in the current study, we hypothesize that perceptual-
motor calibration would be effective in the blind-walking task but not in the bisection task.
Further studies need to determine whether the bias caused by the virtual or real environment
could be reduced by feedback and practice.

In conclusion, our findings demonstrate an environmental effect not only from the virtual
scene but also from the real world, on distance estimation in VR. This is important to both
theoretical studies and applications. First, this is the first study to show that real-world
environment affects distance judgment measured by blind-walking in VR. This notwith-
standing, further studies need to determine the exact cues in the real world that have an
impact on the distance estimation in VR, especially when observers are not aware of the real-
world surroundings, whether or not such unawareness would have a bias on the distance
estimation in VR. Second, for the use of VR in training, veridical distance perception some-
times is crucial. To design such applications, the real-world surroundings and the users’
knowledge of the real world should also be taken into consideration. For instance, a limited
room may bias the distance estimation when actions are performed in VR.
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